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Stabilizing coupled map lattice systems with adaptive adjustment
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The adaptive adjustment mechanism is applied to stabilization of a general coupled-map lattice system
defined byxi ,t115 f (xi ,t)1Ci(xi ,t ,xi 21,t)1D(xi ,t ,xi 21,t), where f : R→R is a nonlinear map, andCi ,Di :
R2→R are coupling functions that satisfyCi(x,x)50 and Di(x,x)50, ; xPR, i 51,2, . . . ,n. Sufficient
conditions and ranges of adjustment parameters that guarantee the local stability of a synchronized fixed point
are provided. Numerical simulations demonstrate the effectiveness and efficiency for this mechanism to stabi-
lize the system to an originally unstable synchronized fixed point or a periodic orbit.
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I. INTRODUCTION

Synchronizing, suppressing, and controlling spatiotem
ral chaos~or turbulence! exhibited in distributed dynamica
systems are of great practical importance both in experim
tal situations and in applications of plasma, laser devic
chemical, and biological systems where both spatial and t
poral dependencies need to be considered. Due to the
ence of numerously more unstable spatial modes resu
from spatial interactions, the control of spatiotemporal ch
leading up to the control of turbulence, turns out to be mu
more complicated than the similar practice for an on
dimensional discrete system. Along with the rapid growth
the interest of controlling chaos in general@1,2#, the issue of
controlling spatiotemporal chaos in particular has attrac
more and more attentions from physicists. Recent advan
@3# include constant pinnings proposed by Parekh, Parth
rathy, and Sinha, feedback pinnings by Hu and Qu, ph
space compression technique by Zhan and Shen, the li
control based on the symmetry property by Grigoriev a
Cross and various delayed-feedback strategies by
manandaet al. The adaptive control in general and in th
presence of coexisting attractors in coupled-map lattices
studied by Sinha and Gupte@4#. An investigation of random
coupling in coupled-map lattice and stabilizing effect for t
synchronized fixed point is offered by Sinha@5#, which in the
mean field sense has a certain similarity with adaptive
justment mechanism~AAM ! discussed in this paper.

In this paper, the adaptive adjustment mechanism stu
in Refs. @6,7# is applied to stabilize a general coupled-m
lattice system. Sufficient conditions and ranges of adjustm
parameters that guarantee the local stability of synchron
fixed points are provided. Numerical simulations are p
vided to show the effectiveness and efficiency for t
mechanism to stabilize the system to an originally unsta
synchronized fixed point or a periodic orbit.

In Sec. II, a general coupled-map lattice system that c
ers all homogeneous coupled-map lattice systems~in the
sense that they are generated by an unique one-dimens
map! studied. Section III then provides some sufficien
conditions for the application of a simple uniformly adapti
adjustment mechanism. Detailed analysis for two comm
seen systems are presented in Sec. IV. Section V is dev
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to the numerical simulations to illustrate the effectivene
and efficiency of adaptive adjustment. Finally, concludi
remarks on other generalizations and possible future rese
are offered in Sec. VI.

II. COUPLED-MAP LATTICE SYSTEMS

Definition 1. A nonlinear process F(X)
5$ f 1(X), f 2(X), . . . f n(X)%, with X5(x1 ,x2 , . . . ,xn), is a
coupled map lattice if

x1,t115 f 1~X!5 f ~x1,t!1C1~x1,t ,x2,t!1D1~x1,t ,xn,t!,

xi ,t115 f i~X!5 f ~xi ,t!1Ci~xi ,t ,xi 11,t!1Di~xi ,t ,xi 21,t!,
~1!

xn,t115 f n~X!5 f ~xn,t!1Cn~xn,t ,x1,t!1Dn~xn,t ,xn21,t!,

wheref : R→R is agenerating map, andCi ,Di : R2→R are
coupling functionsthat satisfy

Ci~x,x!50, Di~x,x!50, ;xPR, i 51,2, . . . ,n. ~2!

As to be seen in Sec. III, Definition 1 covers allhomoge-
neouscoupled-map lattice systems@in the sense that they ar
generated by a unique one-dimensional mapf, as defined in
Ref. @8#! which have been studied in the literature.
coupled-map lattice system defined by Eq.~1! is said to be
uniformly coupled if Ci5C and Di5D for all i
51,2, . . . ,n.

For a coupled-map lattice system, especially when
system sizen is large, there always coexist more than o
fixed point ~stable or unstable! and periodic orbits. Among
these fixed points that are of most interest is the synch
nized invariantX̄5( x̄,x̄, . . . ,x̄). It is easy to check that con
ditions in Eq. ~2! ensure that the pointX̄ so defined is a
synchronized fixed point, that is, X̄5F(X̄) if and only if x̄

itself is a fixed point of the generating mapf, that is, f ( x̄)
5 x̄. Moreover, if x̄ is an unstable fixed point off, thenX̄ is
©2002 The American Physical Society22-1
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also an unstable synchronized fixed point ofF. The con-
verse, however, need not be true. That is, even ifx̄ is a stable
fixed point of the generating mapf, the synchronized fixed
point X̄ of the coupled-map lattice systemF may still be
unstable. Such a situation occurs because of the increa
dimensionality resulting from spatial interactions. This po
can be made clear by examining the Jacobian matrix ev
ated from the synchronized fixed point.

At first, we notice that the conditions~2! would imply
that, for anyxPR, the following identities:
in
na

n

h

,
a
in
b
lf

n

n
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Ci1~x,x!1Ci2~x,x!50,
~3!

Di1~x,x!1Di2~x,x!50,

exist for all i 51,2, . . . ,n, whereCi j (Di j ) denotes the de-
rivatives of functionCi (Di) with respective to itsj th argu-
ment, j 51,2, respectively.

Let s5 f 8( x̄), s i
(c)5 Ci1( x̄,x̄), ands i

(d)5Di1( x̄,x̄), for

i 51,2, . . . ,n. Then the Jacobian matrix ofF evaluated atX̄,
denoted byJ5@ j i j #n3n , can be expressed as
J5F @s1s1
(c)1s1

(d) 2s1
(c) 0 ••• 2s1

(d)

A � ••• ••• A

••• 2s i
(d) s1s i

(c)1s i
(d) 2s i

(c)
•••

A ••• ••• � A

2sn
(c) 0 ••• 2sn

(d) s1sn
(c)1sn

(d)

G .
f
n
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It is well established in matrix analysis that a fixed po
X̄ is unstable if the sum of absolute values of the diago
elements ofJ is greater than the system’s dimensionn, that
is, ( i 51

n u j i i u.n, or, equivalently,

(
i 51

n

us1s i
(c)1s i

(d)u.n. ~4!

Therefore, even whenusu is small, that is,x̄ is stable forf,
the synchronized fixed pointX̄ of a coupled-map lattice ca
still be unstable.

III. UNIFORMLY ADAPTIVE ADJUSTMENT:
GENERAL ANALYSIS

Since the pioneering works by Ottet al. @1#, various al-
gorithms have been designed to stabilize or control the c
otic dynamical systems in general@2#. Most algorithms,
however, either requirea priori knowledge about the system
such as the values and/or the derivatives of periodic orbits
force the system to converge to the periodic orbits that
biased from the original system. The AAM method studied
Refs.@6,7#, however, overcomes such limitations and can
applied without either prior knowledge of the system itse
nor extra external control signals.

For a general multidimensional systemXt115F(Xt),
whereX5(x1 ,x2 , . . . ,xn), an implementation of uniformly
adaptive adjustment means to modify the system into

Xt115Fg5~12g!F~Xt!1gXt , ~5!

whereg.0 andF(Xt) is a coupled-map lattice defined i
Definition 1. If X̄ is a synchronized fixed point ofF, thenX̄
is also a synchronized fixed point ofFg .

It is shown in Refs.@6,7# that, if the original fixed pointX̄
of Eq. ~1! is of either a type I or type II, an implementatio
t
l

a-

or
re

e
,

of uniformly adaptive adjustment~5! can force the system
concerned to converge toX̄ by adjusting the value ofg only.
On the other hand, with the knowledge of exact values oX̄
and its Jacobian matrixJ(X̄), a feedback method has bee
proposed recently to stabilize the fixed point through cro
dimensional feedbacks given in the following format:

Xt115~ I2M !F~Xt!1MX t ,

whereM is ann3n matrix determined fromJ(X̄) @9#.
Unfortunately, despite the fact that an unstable fixed po

of the one-dimensional mapf (x) can be either of type I or
type II only, the coupled map lattice given by Eq.~1!, how-
ever, does have the possibility of possessing a type-III fix
point. This can be demonstrated with the following simp
example.

Example. Consider a four-dimensional uniforml
forward-coupled lattice system in the sense thats i

(c)5s (c)

ands i
(d)50, for all i. Then the Jacobian evaluated at a fix

point is given by

J5F s1s (c) 2s (c) 0 0

0 s1s (c) 2s (c) 0

0 0 s1s (c) 2s (c)

2s (c) 0 0 s1s (c)

G
which gives rise to four distinct eigenvalues:l15s, l2
5s1 2s (c), l3,45s1s (c)6 is (c).

Now assume thats5 f ( x̄),21, that is, the fixed pointx̄
is of type I for the simple one-dimensional map, then t
coupled-map lattice has at least one characteristic root th
less than one (l15s,21). However,l25s1 2s (c) will
2-2
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be greater than unity ifs (c)> 1
2 (12s), which makes the

synchronized fixed pointX̄5( x̄,x̄,x̄,x̄) a type-III one.
Fortunately, in most practical situations, the map latt

systems are relativelyweaklycoupled@10# in the sense tha
the magnitude ofus (c)u1us (d)u is small relative tousu,
which suggests that a simple uniformly adaptive adjustm
can be implemented for a coupled-map lattice so as to st
lize the synchronized fixed point. However, in real practi
especially whenn is large, it is impossible to verify whethe
a synchronized fixed point of a coupled lattice system is
type III or not. It is also difficult to apply the sufficient con
ditions given in Ref.@6# directly, which are established fo
general multidimensional systems. Therefore, it is of pra
cal importance to derive some necessary and/or suffic
conditions for a coupled-map lattice system defined by
~1!, which leads us to Theorem 1.

Theorem 1. ~i! A synchronized fixed point of the coupled
map lattice system defined by Eq.~1! is locally stableif the
inequalities

21,s1s i
(c)1s i

(d)1us i
(c)u1us i

(d)u,1 ~6!
ge

-

03622
e

nt
i-
,

f
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are satisfied for alli 51,2, . . . ,n.
~ii ! If the inequalities s1s i

(c)1s i
(d)1us i

(c)u1us i
(d)u

,21 hold for all i 51,2, . . . ,n, there always exists aG2

5(g2,1# such that the local stability of the synchronize
fixed point of Eq.~5! can be guaranteed forgPG2, where

g2512min
i
H 2

12~s1s i
(c)1s i

(d)1us i
(c)u1us i

(d)u!J .

~iii ! If the inequalitiess1s i
(c)1s i

(d).11us (c)u1us i
(d)u

hold for all i 51,2, . . . ,n, there always exists aG15@1,
g1) such that the local stability of the synchronized fix
point of Eq.~5! can be guaranteed forgPG1, where

g1511min
i
H 2

s1s i
(c)1s i

(d)1us i
(c)u1us i

(d)u21
J .

Proof. With an implementation of uniformly adaptive ad
justment defined by Eq.~5!, the Jacobian matrix ofF̃, evalu-
ated atX̄ and denoted byJ̃5@ ̃ i j #n3n , is thus given by
J̃5F ~12g!~s1s1
(c)1s1

(d)!1g ~12g!s1
(c) 0 ••• ~12g!s1

(d)

A � ••• ••• A

••• ~12g!s i
(d) ~12g!~s1s i

(c)1s i
(d)!1g ~12g!s i

(c)
•••

A ••• � A

~12g!sn
(c) 0 ••• ~12g!sn

(d) ~12g!~s1sn
(c)1sn

(d)!1g

G .
nge,
When g is given, a necessary condition for Eq.~5! to
converge toX̄ is ( i 51

n u j̃ i i u,n, that is,

(
i 51

n

u~12g!~s1s i
(c)1s i

(d)!1gu,n.

The stability ofX̄ can be guaranteed if( j 51
n u j̃ i j u,1 holds

for all i, that is,

u~12g!~s1s i
(c)1s i

(d)!1gu1u~12g!s i
(c)u1u~12g!s i

(d)u

,1, ~7!

for i 51,2, . . . ,n.
If the adjustment is restricted to the conventional ran

that is, 0<g,1, we can defineg512d, with 1>d>0.
Let

gi~d!512d~ us i
(c)u1us i

(d)u!,

hi~d!5u12d„12~s1s i
(c)1s i

(d)!…u.

Condition~7! holds for a particulari if there exists a seg
ment D i

25(0,d i
2),@0,1# such that gi(d).hi(d) for d

PD i
2 . As illustrated in Fig. 1, this is only possible when
,

s1s i
(c)1s i

(d),1 ~8!

and

12~s1s i
(c)1s i

(d)!.us i
(c)u1us i

(d)u. ~9!

However, if Eq.~9! is met, inequality~8! is also met.
Let d i

2 be the solution ofgi(d i
2)5hi(d i

2), that is,

12d~ us i
(c)u1us i

(d)u!5d„12~s1s i
(c)1s i

(d)!…21,

which yields

d i
25

2

12~s1s i
(c)1s i

(d)1us i
(c)u1us i

(d)u!
. ~10!

Second we consider the generalized adjustment ra
that is, g.1. We can similarly defineg511d, with d
>0.

Now let

gi~d!512d~ us i
(c)u1us i

(d)u!,

hi~d!5u12d~s1s i
(c)1s i

(d)21!u.
2-3
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FIG. 1. Illustration of exis-
tence ofD i

2 . ~a! d i
2.1 andD i

2

5@0,1#. ~b! d i
2,1 and D i

2

5@0,d i
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Then similar reasoning can be carried out. Now condition~7!
holds for a particulari if there exists a segmentD i

1

5(1,d i
1),@1,̀ ) such thatgi(d).hi(d) for dPD i

1 , which
is only possible when

s1s i
(c)1s i

(d).11us i
(c)u1us i

(d)u. ~11!

If d i
1 is the solution ofgi(d i

1)5hi(d i
1), then it can be

verified that

d i
15

2

s1s i
(c)1s i

(d)211us i
(c)u1us i

(d)u
.

We also notice that the restriction thatd i
1.0 is guaranteed

when condition~11! is satisfied.
Denote g i

2512d i
2 and g i

1511d i
1 , respectively. So

long as either Eqs.~9! or ~11! is met, the local stability of the
synchronized fixed point can be easily guaranteed withg
.maxi gi

2 or g,mini gi
1 , respectively.

However, the original system is stable if and only ifd i
2

defined by Eq.~10! is greater than unity for alli, which
implies that

s1s i
(c)1s i

(d)1us i
(c)u1us i

(d)u.21. ~12!

Together with condition~9!, we obtain a sufficiency condi
tion for the stability of the unadjusted system~1! as ~6!,
which completes the proof.QED

Remark. The sufficient conditions offered in Theorem
are independent of the system sizen.

IV. SOME SPECIAL SYSTEMS

The sufficient conditions offered in Theorem 1 are for
general coupled-map system. They can be made weake
some special systems.

Definition 2. A synchronized fixed point of a coupled-ma
lattice system defined by Eq.~1! is said to haveuniform

coupling derivatives if s i
(c)5Ci1(X̄)5s (c) and s i

(d)

5Di1(X̄)5s (d), for all i 51,2, . . . ,n. For convenience, if a
synchronized fixed point has uniform coupling derivative
we shall denote their sum ass (cd)5s (c)1s (d).

Apparently, auniformly coupled-map latticedefined by
Ci5C andDi5D will have uniform coupling derivatives a
all synchronized fixed points.

Definition 3. A synchronized fixed point of a coupled-ma
03622
for

,

lattice system defined by Eq.~1! is said to beconsistently
coupledif all coupling derivatives carry the same sign, i.e
s i

(c)s i
(d)>0 ands i

(c)s j
(c)>0 ~and hences i

(d)s j
(d)>0) for all

i , j 51,2, . . . ,n.
Consider a synchronized fixed point of Eq.~1! that has

uniform coupling derivatives and is consistently coupl
concurrently, thens (c)s (d).0 holds true. For such a fixed
point, Theorem 1 can be simplified to:

Theorem 2. For a synchronized fixed pointX̄ of Eq. ~1!
that has uniform coupling derivatives and is consisten
coupled, the local stability ofX̄ is guaranteed if the~cou-
pling! derivatives reside in the following regimes:

~a! regimeS formed byus12s (cd)u,1 andusu,1;
~b! regimeA formed bys (cd).0 ands,2122s (cd), in

which the stability is guaranteed for 1.g.g1 ;
~c! regimeB formed bys (cd).0 ands.1, in which the

stability is guaranteed for 1,g,g1 ;
~d! regimeC formed bys (cd),0 ands.122s (cd), in

which the stability is guaranteed for 1,g,g2 ; and
~e! regimeD formed bys (cd),0 ands,21, in which

the stability the stability is guaranteed for 1.g.g2 ;
where

g15
s12s (cd)11

s12s (cd)21
and g25

s11

s21
.

Proof ~Omitted!.
Remark. The stability regimes and the range of adjustme

parameters that guarantee the stability depend on only
sum of the coupling derivativess (cd), not each individual
derivative.

Figure 2 depicts the stability regimes defined in Theor
2.

As a direct application of Theorem 2, we consider
simple diffusive coupling structure with periodic bounda
conditions,

xi ,t115~12a2b! f ~xi ,t!1a f ~xi 21,t!1b f ~xi 11,t!,
~13!

where the coupling constants obeya,b>0 and a1b,1.
Such a system is among the most studied, see Ref.@3# and
references therein for detailed discussion.
2-4
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We can reexpress Eq.~13! as

xi ,t115 f ~xi ,t!1C~xi ,t ,xi 21,t!1D~xi ,t ,xi 21,t!,

with

C~xi ,t ,xi 21,t!52a„f ~xi ,t!2 f ~xi 21,t!…,

D~xi ,t ,xi 21,t!52b„f ~xi ,t!2 f ~xi 21,t!….

If the derivative of a fixed point off is s, then at the
synchronized fixed pointX̄5( x̄,x̄, . . . ,x̄), we have s (c)

52as, s (d)52bs, ands (c)s (d)5abs2.0. And hence,
Theorem 2 can be directly applied withs (cd)52es, where

e[a1b.

If s,0, the inequalitys (cd).0 implies a synchronized
fixed point of system~13! can be stabilized through a un
formly adaptive adjustment ifa, b, and s satisfy the in-
equality (122e)s,21, which is possible only whene
,1/2. The range of the adjustment parameter is determ
by

FIG. 2. Stability regimes~under uniformly AAM! for synchro-
nized fixed points with uniform and consistent derivatives.
03622
ed

1.g.g25
s~122e!11

s~122e!21
.

On the other hand, ifs.0, we must haves (cd),0.
Therefore, the stabilization can be achieved when
12e)s.1 with

1,g,g15
s11

s21
.

An original stable regime is given byu(122e)su,1 and
usu,1.

Figure 3 depicts the stabilization regimes for the clos
coupled system specified by Eq.~13!, where the sum of the
coupling parameterse plays a critical role.

V. NUMERICAL SIMULATIONS

Now we examine a case of Eq.~13! with the most studied
logistic equation

f l~x!54x~12x!

as a coupling map. We simulate a coupled-map lattice wit
system sizen5100 anda5b5e/2. f l(x) has a unique non-
trivial fixed point of x̄53/4, at which the derivative is given
by s5 f 8( x̄)522. The discussion in the last section su
gests that when (122e)s,21, that is,e,e* 51/4, a uni-

FIG. 3. Stability regimes forxi ,t115(12e) f (xi ,t)1a f (xi 21,t)
1b f (xi 11,t), wheree5a1b.
FIG. 4. Quick convergency
achieved with uniformly AAM:
around the guaranteed regime.
2-5
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FIG. 5. Quick stabilization
achieved with uniformly AAM:
Beyond the guaranteed regime.
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formly adaptive adjustment with a parameter rangeg
P@g2,1# would stabilize the system to the synchroniz
fixed point given byX̄5(3/4,3/4, . . . .,3/4), where

g25
124e

324e
.

Computer simulations for several (e,g) combinations are
presented in Fig. 4 and Fig. 5, where the first 100 iteratio
are carried out without adaptive adjustments and the adj
ments are implemented after the 100th step.

The case depicted in Fig. 4~a! is assumed with a relatively
weak couplinge51/5. Wheng52/5, the system converge
to the synchronized fixed point just in a few iterations. T
effectiveness and efficiency of adaptive adjustment is cle
demonstrated in Fig. 4~b!, where the coupling is not only
strong but also beyond the theoretical guaranteed range
51/2.e* 51/4). We can see that the convergence to
synchronized fixed point is again quickly achieved with t
same adjustment coefficient.

In the real applications of coupled-map lattice systems
synchronized fixed point may not be of any particular imp
tance. Therefore, as most studies shown in Ref.@3#, people
are more concerned with the stabilization issue rather t
the control issue. This is justified by the fact that there
ways coexist numerous stable and/or unstable fixed po
~periodic orbits! in a coupled-map lattice system. This is e
pecially true when the system sizen is large. For a genera
multidimensional system, when more than one stable fi
point or periodic orbits are present: which one of them,
system will converge generally depends on the initial sta
of the system. It would be difficult to enforce a system
converge to any particular state, should no additional inf
mation be utilized~at least the numerical values of this fixe
point!.
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Theoretically, since AAM is designed to operate under
prior information about the system, and all fixed points a
periodic orbits~including the synchronized fixed point! are
‘‘generic’’ to the adaptive adjustment mechanism, an imp
mentation of AAM might stabilize all these fixed points s
multaneously, provided the range of adjustment parame
overlap. The final state that the adjusted system conve
will depend on the exact state of the system when AAM
triggered on.

Finally, we point out that, even for very strong couplin
that is in fact far beyond the stability regimes guaranteed
Fig. 3, an implementation of uniform adaptivity can still he
a coupled-map lattice to stabilize to some fixed points~not
necessarily synchronized! or periodic orbits. This can be
seen for the casee54/5@e* illustrated in Fig. 5. With an
adjustment parameterg52/5, the system will then converg
to a fixed point. This fixed point, however, is not a synch
nized one. Figure 5~a! plots three nearby trajectories:x49,t ,
x50,t andx51,t . Wheng decreases to 2/5, a typical trajecto
converges to a two periods cycle, which is depicted in F
5~b!.

VI. CONCLUDING COMMENTS

We have proven in theory that a uniformly adaptive a
justment can be utilized to stabilize a coupled-map latt
system. The necessary and sufficient conditions for the
bility of a synchronized fixed point in particular are iden
fied. Simulations conducted have shown such stabiliza
turns out to be very effective and efficient. Stabilization of
original unstable coupled-map system is usually achie
soon after the adaptive adjustment is triggered on.

Further research would be applying AAM to the ca
where only global variables rather than local variables
observed. The generalization of the same mechanism
adaptive pinnings of some boundary variables deserves
ther study as well.
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